
Dr. Marques Sophie Number theory Spring Semester 2013
Office 519 marques@cims.nyu.edu

Problem Set #2

Due monday 16 September in Class

We recall the following important results good to know:

Let R be a GCD ring, and f(X) ∈ R[X]. Then the content of f , cont(f(X)) is
the greatest common divisor of the coefficients of f(X).

Lemma 1: If cont(F (X)) = cont(G(X)) = 1, F (X), G(X) ∈ R[X], then

cont(F (X)G(X)) = 1.

More generally, for f(X), g(X) ∈ R[X], cont(f(X)g(X)) = cont(f(X))cont(g(X)).

Proof of Lemma 1: Suppose irreducible p ∈ R divides all coefficients of F (X)G(X).
Then F (X)G(X) = 0 in (R/p)[X], wish is an integral domain. Thus p either divides
all coefficients of F (X) or p divides all coefficients of G(X), since one of F (X), G(X)
must be 0 in (R/p)[X]. But this contradicts the assumption cont(F ) = cont(G) = 1.
In the general case, write f = dF , g = d′G, where cont(F ) = cont(G) = 1. Then fg =
dd′FG, so, by the first part of the Lemma, cont(f(X)g(X)) = cont(f(X))cont(g(X)).

Lemma 2 (Gauss): Let K be the field of fractions of R. If P (X) ∈ R[X] factors in
K[X] then P (X) factors in R[X] with factors of the same degrees as the K[X] factors. In
particular if P (X) ∈ R[X] is irreducible if and only if P (X) is also irreducible in K[X].

Proof of Lemma 2: Every element of K[X] can be written A(X)/a, where A(X) ∈
R[X] and a ∈ R. Suppose in K[X], we have P (X) = (A(X)/a)(B(X)/b), with a, b ∈ R
and A(X), B(X) ∈ R[X]. Then abP (X) = A(X)B(X) ∈ R[X]. Consider an irre-
ducible factor p of ab in R. Then A(X)B(X) = 0 in (R/p)[X]. Thus p either divides
all coefficients of A(X) or p divides all coefficients of B(X). We can then cancel a fac-
tor p in the R[X] equation abP (X) = A(X)B(X), without leaving R[X]. By induction
on the number of prime factors of ab in R, conclude P (X) = A′(X)B′(X) ∈ R[X],
where deg(A(′(X)) = deg(A(X)) and deg(B(X)) = deg(B′(X)).

Theorem 1: R is a UFD then R is a UFD. In Particular, by induction R[X1, ..., Xn].

Proof of Theorem 1: First, suppose f(X) = a0 + a1X + a2X
2 + ... + anX

n, for
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aj ∈ R. Then define the content of f(X) to be cont(f(X)) = gcd(a0, ..., an) = d in R.
(So cont(f(X)) is well-defined up to a unit factor in R.)
(Existence) If p ∈ R is irreducible then p is also irreducible in R[X]. if f(X) ∈ R[X],
write f(X) = dF (X), where d = cont(f(X)). Then cont(F (X)) = 1. We can certainly
factor d into a product of irreducibles in R. Either F (X) is irreducible in R(X) or it
factors properly as a product of lower degree polynomials (since cont(F (X)) = 1). All
the factors will also have content 1 (since a divisor of any factor would divide F .) We
can only lower degree of factors finitely often, so we get a factorization of F (X), and
hence f(X), as a product of irreducibles in R[X].
(Uniqueness) It suffices to prove each irreducible element of R[X] generates a prime
ideal in R[X]. For irreducibles p ∈ R this is clear R[X]/pR[X] = (R/p)[X], which is
an integral domain.
Now we finish the proof of Theorem 1 by showing (P (X)) ⊂ R[X] is a prime ideal
if P (X) is irreducible in R[X]. Certainly cont(P (X)) = 1 and by the Gauss Lemma
P (X) is irreducible in K[X]. Suppose P (X)Q(X) = F (X)G(X) ∈ R[X] ⊂ K[X].
Since K[X] is a PID, we know P (X) divides F (X) or G(X) in K[X]. Say in K[X]
we have F (X) = P (X)(S(X)/s) with S(X) ∈ R[X], s ∈ R. Then in R[X] we have
P (X)S(X) = sF (X). Then s divides cont(P (X)S(X)) = cont(S(X)) by Lemma 1. So
S(X)/s is in R[X] and F (X) is in the ideal (P (X)) ⊂ R[X].

Exercise 3 p 15 [N]
In the polynomial ring A = Q[X, Y ], consider the principal ideal p = (X2 − Y 3). Show
that p is a prime ideal, but A/p is not integrally closed.

Solution:
We give different approaches to prove that p is a prime ideal:

1. To prove that the polynomial f(X) = X2−Y 3 is irreducible in Q[X, Y ], it suffices
to prove that it is irreducible in Q(Y )[X]. this is clear because being a polynomial
of degree 2, it has no root in Q(Y ).

2. We can also prove that we have an isomorphism

Q[X, Y ]/(X2 − Y 3) ' Q[t2, t3]

and conclude, since Q[T 2, T 3] being a integral domain implies (X2 − Y 3) will be
a prime ideal.
For this, consider the morphism:

φ : Q[X, Y ] → Q[T 2, T 3]
X 7→ T 3

Y 7→ T 2

It is clearly a surjective morphism and (X2 − Y 3) ⊆ ker(φ).
Take an element f(X, Y ) ∈ Ker(φ), i.e. as a polynomial in variable X and
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coefficients coming from k[Y ]. If you divide f(X, Y ) by (X2 − Y 3), we will get

f(X, Y ) = g(X, Y )(X3 − Y 2) + r(X, Y )

where r(X, Y ) ∈ k[Y ][X] and degree of r(X, Y ) is less than two. But then
f(T 3, T 2) = 0 implies r(T 3, T 2) = 0. But if r(X, Y ) is not zero, r(T 3, T 2) can-
not be zero because r(X, Y ) is a polynomial of degree less two in variable X with
coefficients in K[Y ]. So that r(T 3, T 2) = 0 and f(X, Y ) ∈ ker(φ).

Note that we could also have just argued by contradiction, supposing that X2 − Y 3 can
be factorized and it will be the factorization in K(X)[Y ] and argue on the degree and
the form of the possible polynomials.

As a consequence it is an integral domain but not integrally closed t = x̄/ȳ is in the
fraction field and integral (satisfies z2 − t2 = 0 in C[t2, t3]) but not in C[t]

Exercise 4 p 15 [N]
Let D be a square free integer 6= 0, 1 and d the discriminant of the quadratic number
field K = Q[

√
D]. Show that

d = D and {1, (1 +
√
D)/2} is an integral basis of K if D ≡ 1 mod 4

d = 4D and {1,
√
D} is an integral basis of K if D ≡ 2 or 3 mod 4

and that {1, (d+
√
d)/2} is an integral basis of K in both cases.

Solution:
Let α ∈ K, α = a+b

√
D

c
with gcd(a, b, c) = 1. Claim that α ∈ OK if and only if(

t− a+ b
√
d

c

)
∈ Z[t]

So if and only if

1.
2a

c
∈ Z, and

2.
a2 − b2D

c2
∈ Z

Let q = gcd(a, c). From (2), q2|a2 − b2D. But q2|a2 and D is square free, so q|b. But
gcd(a, b, c) = 1 so q = 1. From (1), then c = 1 or 2. If c = 1 then α ∈ OK, anyway.
If c = 2 then a2 − b2d ≡ 0 mod 4, by (2). But a is odd as q = 1 and so b must be odd
too, whence a2 ≡ b2 ≡ 1 mod 4. Hence, 1− d ≡ 0 mod 4.

If D ≡ 1 mod 4 then d =

(
det

(
1 1

(1 +
√
D)/2 (1−

√
D)/2

))2

= D

If D ≡ 2 or 3 mod 4 then d =

(
det

(
1 1√
D) −

√
D)

))2

= 4D
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Then,
If D ≡ 1 mod 4 then (d+

√
d)/2 = (D +

√
D)/2 ∈ OK

If D ≡ 2 or 3 mod 4 then (d+
√
d)/2 = 2D +

√
D ∈ OK

So that, in both cases, {1, (d+
√
d)/2} is an integral basis of K.

Exercise 5 p 15 [N]
Show that {1, 3

√
2, 3
√

22} is an integral basis of Q(3
√

2).

Solution:
Let K = Q(3

√
2). We can calculate d = disc(1, 3

√
2, 3
√

2
2
) using the formula for

θ = 3
√

2,
disc(1, θ, θ2) = ((θ1 − θ2)(θ1 − θ3)(θ2 − θ3))2

where θ1 = θ, θ2 = e
2πi
3 θ, θ2 = e

4πi
3 θ, the image of θ by the 3 Q-embedding σ1 = Id,

σ2 : θ 7→ e
2πi
3 θ and σ3 : θ 7→ e

4πi
3 θ. Then

d = 4
(

1− e
2πi
3

)2 (
e

2πi
3 − e

4πi
3

)2 (
1− e

4πi
3

)2
= 108

Hence we know that

d =
[
OK : Z + Z3

√
2 + Z3

√
4
]2
disc(OK) = 108 = 2233.

The possible values for i =
[
OK : Z + Z3

√
2 + Z3

√
4
]

are the numbers whose squares
divide 108, namely 1, 2, 3, and 6. In particular, in each cases, i|6. So that

iOK ⊆ Z + Z3
√

2 + Z3
√

4

So that if α = a+ b3
√

2 + c3
√

2 (a, b, c ∈ Q) is integral over Z, then the coefficients a,
b, and c must have denominator dividing 6 (when the fractions are reduced). Moreover,
a product of the denominators must also divide 6. Consider the minimal polynomial of
α

f(x) =
3∏

i=1

(x− σi(α)) = x3 − 3ax2 + (3a2 − 6bc)x+ (−a3 − 2b3 + 6abc− 4c3).

The coefficients of f(x) must be in Z. The element a cannot have a 2, 3, or 6 in its de-
nominator because otherwise the coefficients of x2 and x in f(x) would not be integers, as
a consequence a is an integer. Similarly, b and c must be integers so that the coefficient
of x and the constant term will be integers. Therefore,

[
OK : Z + Z3

√
2 + Z3

√
4
]

= 1,

and we have equality OK = Z + Z3
√

2 + Z3
√

4.
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